Extensions 1→N→G→Q→1 with N=C2 and Q=C23.18D10

Direct product G=NxQ with N=C2 and Q=C23.18D10
dρLabelID
C2xC23.18D10160C2xC2^3.18D10320,1468


Non-split extensions G=N.Q with N=C2 and Q=C23.18D10
extensionφ:Q→Aut NdρLabelID
C2.1(C23.18D10) = C23.42D20central extension (φ=1)160C2.1(C2^3.18D10)320,570
C2.2(C23.18D10) = C24.3D10central extension (φ=1)160C2.2(C2^3.18D10)320,571
C2.3(C23.18D10) = C24.46D10central extension (φ=1)160C2.3(C2^3.18D10)320,573
C2.4(C23.18D10) = C10.97(C4xD4)central extension (φ=1)320C2.4(C2^3.18D10)320,605
C2.5(C23.18D10) = C24.18D10central extension (φ=1)160C2.5(C2^3.18D10)320,847
C2.6(C23.18D10) = C24.7D10central stem extension (φ=1)160C2.6(C2^3.18D10)320,576
C2.7(C23.18D10) = C24.9D10central stem extension (φ=1)160C2.7(C2^3.18D10)320,579
C2.8(C23.18D10) = C23.14D20central stem extension (φ=1)160C2.8(C2^3.18D10)320,580
C2.9(C23.18D10) = (C2xC20).53D4central stem extension (φ=1)320C2.9(C2^3.18D10)320,610
C2.10(C23.18D10) = (C2xC20).55D4central stem extension (φ=1)320C2.10(C2^3.18D10)320,613
C2.11(C23.18D10) = (C2xC10).D8central stem extension (φ=1)160C2.11(C2^3.18D10)320,660
C2.12(C23.18D10) = C4:D4.D5central stem extension (φ=1)160C2.12(C2^3.18D10)320,661
C2.13(C23.18D10) = (C2xD4).D10central stem extension (φ=1)160C2.13(C2^3.18D10)320,662
C2.14(C23.18D10) = C22:Q8.D5central stem extension (φ=1)160C2.14(C2^3.18D10)320,670
C2.15(C23.18D10) = (C2xC10).Q16central stem extension (φ=1)160C2.15(C2^3.18D10)320,671
C2.16(C23.18D10) = C10.(C4oD8)central stem extension (φ=1)160C2.16(C2^3.18D10)320,672
C2.17(C23.18D10) = C24.20D10central stem extension (φ=1)160C2.17(C2^3.18D10)320,849

׿
x
:
Z
F
o
wr
Q
<